3.1.85 \(\int \sqrt {x} (b x+c x^2)^{3/2} \, dx\)

Optimal. Leaf size=80 \[ \frac {16 b^2 \left (b x+c x^2\right )^{5/2}}{315 c^3 x^{5/2}}-\frac {8 b \left (b x+c x^2\right )^{5/2}}{63 c^2 x^{3/2}}+\frac {2 \left (b x+c x^2\right )^{5/2}}{9 c \sqrt {x}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {656, 648} \begin {gather*} \frac {16 b^2 \left (b x+c x^2\right )^{5/2}}{315 c^3 x^{5/2}}-\frac {8 b \left (b x+c x^2\right )^{5/2}}{63 c^2 x^{3/2}}+\frac {2 \left (b x+c x^2\right )^{5/2}}{9 c \sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[x]*(b*x + c*x^2)^(3/2),x]

[Out]

(16*b^2*(b*x + c*x^2)^(5/2))/(315*c^3*x^(5/2)) - (8*b*(b*x + c*x^2)^(5/2))/(63*c^2*x^(3/2)) + (2*(b*x + c*x^2)
^(5/2))/(9*c*Sqrt[x])

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 656

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[(Simplify[m + p]*(2*c*d - b*e))/(c*(m + 2*p + 1)), In
t[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && IGtQ[Simplify[m + p], 0]

Rubi steps

\begin {align*} \int \sqrt {x} \left (b x+c x^2\right )^{3/2} \, dx &=\frac {2 \left (b x+c x^2\right )^{5/2}}{9 c \sqrt {x}}-\frac {(4 b) \int \frac {\left (b x+c x^2\right )^{3/2}}{\sqrt {x}} \, dx}{9 c}\\ &=-\frac {8 b \left (b x+c x^2\right )^{5/2}}{63 c^2 x^{3/2}}+\frac {2 \left (b x+c x^2\right )^{5/2}}{9 c \sqrt {x}}+\frac {\left (8 b^2\right ) \int \frac {\left (b x+c x^2\right )^{3/2}}{x^{3/2}} \, dx}{63 c^2}\\ &=\frac {16 b^2 \left (b x+c x^2\right )^{5/2}}{315 c^3 x^{5/2}}-\frac {8 b \left (b x+c x^2\right )^{5/2}}{63 c^2 x^{3/2}}+\frac {2 \left (b x+c x^2\right )^{5/2}}{9 c \sqrt {x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 42, normalized size = 0.52 \begin {gather*} \frac {2 (x (b+c x))^{5/2} \left (8 b^2-20 b c x+35 c^2 x^2\right )}{315 c^3 x^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[x]*(b*x + c*x^2)^(3/2),x]

[Out]

(2*(x*(b + c*x))^(5/2)*(8*b^2 - 20*b*c*x + 35*c^2*x^2))/(315*c^3*x^(5/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.33, size = 66, normalized size = 0.82 \begin {gather*} \frac {2 \sqrt {b x+c x^2} \left (8 b^4-4 b^3 c x+3 b^2 c^2 x^2+50 b c^3 x^3+35 c^4 x^4\right )}{315 c^3 \sqrt {x}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[x]*(b*x + c*x^2)^(3/2),x]

[Out]

(2*Sqrt[b*x + c*x^2]*(8*b^4 - 4*b^3*c*x + 3*b^2*c^2*x^2 + 50*b*c^3*x^3 + 35*c^4*x^4))/(315*c^3*Sqrt[x])

________________________________________________________________________________________

fricas [A]  time = 0.39, size = 60, normalized size = 0.75 \begin {gather*} \frac {2 \, {\left (35 \, c^{4} x^{4} + 50 \, b c^{3} x^{3} + 3 \, b^{2} c^{2} x^{2} - 4 \, b^{3} c x + 8 \, b^{4}\right )} \sqrt {c x^{2} + b x}}{315 \, c^{3} \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*(c*x^2+b*x)^(3/2),x, algorithm="fricas")

[Out]

2/315*(35*c^4*x^4 + 50*b*c^3*x^3 + 3*b^2*c^2*x^2 - 4*b^3*c*x + 8*b^4)*sqrt(c*x^2 + b*x)/(c^3*sqrt(x))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 110, normalized size = 1.38 \begin {gather*} \frac {2}{315} \, c {\left (\frac {16 \, b^{\frac {9}{2}}}{c^{4}} + \frac {35 \, {\left (c x + b\right )}^{\frac {9}{2}} - 135 \, {\left (c x + b\right )}^{\frac {7}{2}} b + 189 \, {\left (c x + b\right )}^{\frac {5}{2}} b^{2} - 105 \, {\left (c x + b\right )}^{\frac {3}{2}} b^{3}}{c^{4}}\right )} - \frac {2}{105} \, b {\left (\frac {8 \, b^{\frac {7}{2}}}{c^{3}} - \frac {15 \, {\left (c x + b\right )}^{\frac {7}{2}} - 42 \, {\left (c x + b\right )}^{\frac {5}{2}} b + 35 \, {\left (c x + b\right )}^{\frac {3}{2}} b^{2}}{c^{3}}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*(c*x^2+b*x)^(3/2),x, algorithm="giac")

[Out]

2/315*c*(16*b^(9/2)/c^4 + (35*(c*x + b)^(9/2) - 135*(c*x + b)^(7/2)*b + 189*(c*x + b)^(5/2)*b^2 - 105*(c*x + b
)^(3/2)*b^3)/c^4) - 2/105*b*(8*b^(7/2)/c^3 - (15*(c*x + b)^(7/2) - 42*(c*x + b)^(5/2)*b + 35*(c*x + b)^(3/2)*b
^2)/c^3)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 44, normalized size = 0.55 \begin {gather*} \frac {2 \left (c x +b \right ) \left (35 c^{2} x^{2}-20 b c x +8 b^{2}\right ) \left (c \,x^{2}+b x \right )^{\frac {3}{2}}}{315 c^{3} x^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)*(c*x^2+b*x)^(3/2),x)

[Out]

2/315*(c*x+b)*(35*c^2*x^2-20*b*c*x+8*b^2)*(c*x^2+b*x)^(3/2)/c^3/x^(3/2)

________________________________________________________________________________________

maxima [A]  time = 1.47, size = 102, normalized size = 1.28 \begin {gather*} \frac {2 \, {\left ({\left (35 \, c^{4} x^{4} + 5 \, b c^{3} x^{3} - 6 \, b^{2} c^{2} x^{2} + 8 \, b^{3} c x - 16 \, b^{4}\right )} x^{3} + 3 \, {\left (15 \, b c^{3} x^{4} + 3 \, b^{2} c^{2} x^{3} - 4 \, b^{3} c x^{2} + 8 \, b^{4} x\right )} x^{2}\right )} \sqrt {c x + b}}{315 \, c^{3} x^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(1/2)*(c*x^2+b*x)^(3/2),x, algorithm="maxima")

[Out]

2/315*((35*c^4*x^4 + 5*b*c^3*x^3 - 6*b^2*c^2*x^2 + 8*b^3*c*x - 16*b^4)*x^3 + 3*(15*b*c^3*x^4 + 3*b^2*c^2*x^3 -
 4*b^3*c*x^2 + 8*b^4*x)*x^2)*sqrt(c*x + b)/(c^3*x^3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \sqrt {x}\,{\left (c\,x^2+b\,x\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(1/2)*(b*x + c*x^2)^(3/2),x)

[Out]

int(x^(1/2)*(b*x + c*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {x} \left (x \left (b + c x\right )\right )^{\frac {3}{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(1/2)*(c*x**2+b*x)**(3/2),x)

[Out]

Integral(sqrt(x)*(x*(b + c*x))**(3/2), x)

________________________________________________________________________________________